9.3: Separable Differential Equations

Entry Task: (Motivation) Implicitly differentiate $x^2 + y^3 = 8$ and solve for $\frac{dy}{dx}$. *Idea*: Separate... integrate both sides. *Entry Task continued*: Find the *explicit* solution for $\frac{dy}{dx} = \frac{-2x}{3y^2}$

with y(0) = 2.

9.3: Separable Differential Equations

A **separable** differential equation can be written as:

$$\frac{dy}{dx} = f(x)g(y).$$

(or $\frac{dy}{dx} = \frac{f(x)}{g(y)}$ or $\frac{dy}{dx} = \frac{g(y)}{f(x)}$.)

Example: Find the explicit solution to

$$\frac{dy}{dx} = \frac{x}{y^4}$$

with $y(0) = 1$.

Example: Find the explicit solution to $\frac{dy}{dx} = \frac{x \sin(2x)}{3y}$ with y(0) = -1. *Example*: Find the explicit solution to

$$(x+1)\frac{dy}{dx} = \frac{x^2}{e^y}$$

with $y(0) = 0$.

Law of Natural Growth

Assumption: "The rate of growth of a population is proportional to the size of the population."

$$\frac{dP}{dt}$$
 = rate of change of the

population

The law of natural growth assumes

$$\frac{dP}{dt} = kP,$$

for some constant k

(we call *k* the <u>relative</u> growth rate).

Find the explicit solution to

$$\frac{dP}{dt} = kP \text{ with } P(0) = P_0$$

500 bacteria are in a dish at t=0hr.
 8000 bacteria are in the dish at t=3hr.
 Assume the population grows at a rate proportional to its size.
 Find the function, B(t), for the bacteria population with respect to time.

2. The *half-life* of cesium-137 is 30 years. Suppose we start with a 100-mg sample. The mass decays at a rate proportional to its size.
Find the function, m(t), for the mass with respect to time.

3. You invest \$10,000 into a savings account and never make any deposits or withdrawals. The balance grows at a rate proportional to its size (i.e. *interest* is a percentage of the balance at any time). In 3 years, you notice your balance is \$10,400. Find the function, A(t), for the amount of money in the account with respect to time.